NUMERICAL SOLUTION OF TRANSFER THEORY
PROBLEMS BY THE DIRECT REDUCTION METHOD

V. Pol' and P. M. Kolesnikov UDC 517.549;536.2.13
A reduction method is presented for solution of stationary and nonstationary problems in
transfer theory for boundary conditions of the first and second sort,

We will consider a nonstationary heat-mass-transfer eguation within the rectangular region 0 <d <d,
O=y=bforO0<t=<T:
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In the stationary case Eq. (1) transforms to the Helmhelz equation
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Analytic solution of these problems can be carried to completion by the methods of separation of vari-
ables, finite integral transformations, Green functions, etc.

Such solutions, applicable over a wide range of parameter variation, in the form of functions q(x, y, t),
f(x, y), Ti, @i @ =1, 2, 3, 4) usually require the calculation of series, eigenfunctions, and various integrals
to obtain numerical values, and thus even in the presence of a formal solution the determination of numerical
values is a cumbersome problem.

Numerical solution of such problems can be performed by various methods — the grid method, variation,
iteration, and direct methods, etc. One of the direct methods is Buneman's reduction method [1], which is
called the direct reduction method [2, 3] or the decomposition method [4] in the literature. *

We will describe the essence of the method for the nonstationary case. We will denote the grid points by

2y = (ihe; jha, nAl),
where

hy=a/Ny, hy = biNy, At = TIM.

For boundary conditions of the first sort, the method requires N, =251 + 2 and N, =252 + 2, while for
conditions of the second sort N; =281 + 2 and N, =252 + 2, We write the value of the grid function in the form

u?; = u(2y).
We introduce a quantity with weight o:
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and approximate Eq. (1) to an accuracy 0(h} + h} + At?)
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Correspondingly, we will approximate conditions (2)-(4) thus:
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Equations (8)-(11) allow calculations with a large time step. A shortcoming of this scheme in the case
of boundary conditions of the second sort is that the reduction method requires an approximation, Eq. (11),
and thus is nonconservative [3].

We will consider a layer fixed in time (emitting the index). We rewrite Egs. (8), (10), (11) in the form
of a matrix three-diagonal scheme in which all known quantities lie on the right-hand side, For boundary con-
ditions of the first sort

Uzy
.. 12)
—u_, + Auj—u‘.+I =g, U=
uKtl
* The present study was carried out in 1976~1977 while Pol’ was inthe USSR, and the results were obtained indepen-
dently from [3, 4], whichstudies the authors became aware of after the present study was printed.
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Boundary conditions of the second sort reduce to relationships of the form
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The reduction, or Buneman [1), method uses doubly cyclic reduction. We use the notation

A‘0)=A, B(O) B, g(O) g

The basic reduction formulas for boundary conditions of the first sort, Eq. (12), have the form
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while for boundary conditions of the second sort, Eq. (13),
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For Eq. (18) it is necessary to continue the reduction
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In both cases the last reduction step permits obtaining a solution for the central vector, while Eqgs.

and (18) allow calculation of all remaining vectors upon reduction of t.
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In calculating the right-hand sides q-(t) with Eqs. (16), (18), and (20) it is necessary to operate with a

high order of numbers, (depending on dimensionality), which leads to an increase in computation error.
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However, this shortcoming can be eliminated by recurrent formulas working with only inverse matrices
2]. Below we present a variant realizing the vectors p; t) and g ) on a computer, for which

g = Aph 4 gin,  glh = Blhp(n 1 g(n. (22)
Let p, O =y, 4 =g (), Then for boundary conditions of the first sort
PUH = pff o A= (g0, b p A qi0), U= gyt U 42D, (23)
and for conditions of the second sort

P = P - B @20y + g G = 2(af) e -+ pE)

ity = p + BUO=1 (py, + 0y +410), D = g0y + g0y 4-2p1HD, 24)

PAFY = i)+ BU=D 200y + 44D, D = 2(0) o0 + pYFY).
The last reduction step leads to
P go =Piityy  BOTUT NV 4 P ),

(25)
q;s;,)—l 42 = q(Ns:—l) + q(;’—l) + 4p$:s:)—l 42
The programs which were developed, like Buneman's original program [1], utilize the second variant,
Eq. (22), which realizes only q;%), This method requires somewhat more computation time but is less de-
manding of machine memory, t)or which only the expressions :

1 1 .
PD= (gD — g — )y Pt ga = = @St — g — ) (26)

are required, eliminating the quantities pj(t) in Egs. (24) and (25) and leading to new recurrent formulas for
qj (t) .

Revolution of the matrices A®) and B%), t =0, ..., s, —1 is accomplished with the aid of factored
matrices

t ’
AN — gt :’E,[%( A 52 cos ( 2"2:11 . )E )] ) 27

The formula for B(t) is analogous. The factored BS2 has the form

BSY st:(\ 21-]-:_1 {Lﬁ (3(0) + 2cos (Ev,— n ) E Dz[—é—(ﬁ"m +2) Hé—(Bm —2) ] . (28)

Revolution of the matrices A®), B(t), and B(S2) leads to revolution of the three-diagonal matrices with the aid
of reduction and multiplication by g~% or =252, The form of the factorization formula is related to this. This
method is more rapid than the drive method of [4], but leads to a limitation on N;. Inthe caseof y =n =0
the quantity 1/8 (B(®) —2) will be irregular, but then the solution can be defined at a single point.

The reduction method was realized in the form of two programs for solving nonstationary and stationary
equations for boundary conditions of the first and second sort. A number of test problems were solved with
these programs on a Minsk-32 machine. For example, the problem of Eqs. (1)-{4) was solved with y =1.205,
g =0 and initial condition

f(x, y) =sin (ﬁ> sin (1“/—)
a b |

atg =0 and Tl =T2 =T3 =T4 =0.
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The theoretical and numerical solutions coincided to an accuracy of 10-4 at step values of h; =0.09,
h, =0.1. Twelve points in time with a step At = 0.1 were calculated. Time required for calculating one
variant was 5 min.

NOTATION

v and w, coefficients; u, temperature, concentration,etc.; x and y, coordinates; t, time; A, Laplace
operator; f(x, y), initial function; g(x, y, t) and T; {y, t); To(x, t); T3y, t); Ty, t); @10 1)5 @a(x, t); @3¢, t);
94(%, t), specified functions; s, and s,, dimensionality coefficients of data blocks; A(®), A®), A(t-1), matrices
of algebraic system of equations for boundary conditions of first sort; B(, B®), Bl-1, matrices of system of
equations for boundary conditions of second sort; gj, vectors of right-hand sides; E, unit matrix; «, B, ele-
ments of three-diagonal matrix; uj, pj-ot*, uj wt*1, vectors of desired quantities; g;®), pj®,t =1,...,s
vectors in cyclical reduction; h, and h,, step of space grid; At, step in time; a, b, dimensions of rectangle;

N,; and N,, number of grid points along x and y axes, respectively; znij, grid; ur{j, grid function; ¢, real
parameter (weight).
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SOLUTION OF THE NONLINEAR INVERSE THERMAL
CONDUCTIVITY PROBLEM BY THE ITERATION METHOD

O. M. Alifanov and V. V. Mikhailov

A regular iteration algorithm is constructed for the case of a nonlinear generalized thermal
conductivity equation for determination of the nonstationary thermal flux, The algorithm is
based on the method of conjugate gradients.

In experimental studies of nonstationary thermal processes, it becomes necessary to calculate thermal
boundary conditions from temperature measurements within bodies (the inverse thermal conductivity boundary
problem). The well-known incorrectness of the formulation of this inverse problem, which manifests itself
as a strong sensitivity of the results to errors in the input information, requires the development of approxi-
mate algorithms which can suppress the instability of the results and maintain required accuracy.

We will consider the inverse problem for a nonlinear generalized thermal conductivity equation in the
region{0 <x<b, 0=<t= tm}. It is required that the dependence of thermal flux q, (t) on the left-hand boun-

dary-on the known temperature f(t) and the thermal flux q,(t) on the right-hand boundary be determined. Initial
conditions are specified. Thus, we have

D5 = % ( (7 ax—) + K1) ——+@(T), 0<x<by 0<t<tyy

T (x, 0) =E(x) )
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