
N U M E R I C A L  S O L U T I O N  OF T R A N S F E R  T H E O R Y  

P R O B L E M S  BY T H E  D I R E C T  R E D U C T I O N  M E T H O D  

V.  P o l '  a n d  P .  M. K o l e s n i k o v  UDC 517.549;536.2.13 

A reduction method is presented for  solution of s ta t ionary and nonstat lonary problems in 
t r a n s f e r  theory  for  boundary conditions of the f i r s t  and second so r t .  

We will consider  a nonstat ionary h e a t - m a s s - t r a n s f e r  equation within the rec tangular  region 0 <_ d _< d, 
0 _ < y _ < b f o r  0 < t _ < T :  

du c~u o~u 
at ax 2 Oy~ 

- - + a u = g ( x ,  y, t); v > O ,  •  (i) 

given initial conditions 

.u.ix, y, O)= l (x, y) 

and boundary conditions of the f i r s t  so r t  

u(O, y, t ) =  T(,)(y, t), u(a, y, t ) =  Tcs)(y, t), 

u(x, O, t)---- T{:)(x, t), u(x, b, t ) =  T(4)(x, t) 

or  of the second so r t  

Ou(x, o, t) Ou(a, y, t) 
Ox - ~c~) (Y, t), Ox = vpo) (y, t), 

Ou(x, O, 0 (x, t), Ou(x, b, t) = % i ( x  ' t). 
ay = ~(2) Oy 

In the s ta t ionary case  Eq. (1) t r an s fo rm s  to the Helmholz equation 

~u  OZu 

ax: ay'. 
xu = gc ~) (x, y) 

with boundary conditions of the f i r s t  type 

u(0, y ) -  T(l)(y), u(a, y ) =  T(3)(y), 

u(x, O) = T(2)(x), u(x, b) = T(4)(x) 

or second type 

Ou (0, y) Ou (a, y) 
Ox = ~(~ (Y)' Ox 

Ou (x, O) Ou (x, b) 
Oy = ~(s~ (x), Oy 

= '~(3~ (Y), 

= (p(~ (x). 

(2) 

(3) 

(4) 

(5) 

(6)  

if) 
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Analytic solution of these problems can be c a r r i e d  to completion by the methods of separat ion of va r i -  
ables ,  finite integral  t r ans fo rmat ions ,  Green functions,  etc. 

Such solutions,  applicable over a wide range of pa rame te r  variat ion,  in the form of functions q(x, y,  t), 
f(x, y),  Ti, ~oi (i = 1, 2, 3, 4) usually requi re  the calculation of s e r i e s ,  eigenfunctions, and various integrals 
to obtain numerica l  values,  and thus even in the presence  of a formal  solution the determination of numerical  
values is a cumbersome  problem. 

Numerical  solution of such problems can be per formed by various methods -- the grid method, variat ion,  
i terat ion,  and direct  methods,  etc. One of the direct  methods is Buneman's  reduction method [1], which is 
called the direct  reduction method [2, 3] or  the decomposit ion method [4] in the l i te ra ture .  * 

We will descr ibe  the essence of the method for the nonstat ionary case.  We will denote the grid points by 

where 

~ I  = ( ih i  ; lh2 ' n a t ) ,  

h i  = a l N l ,  hz  -~ b / N z ,  A t  = T I M .  

For  boundary conditions of the f i r s t  so r t ,  the method requires  N 1 = 2 si + 2 and N 2 = 2s2 + 2, while for 
conditions of the second so r t  N 1 = 2sI + 2 and N 2 = 2s2 + 2. We write the value of the gr id  function In the fo rm 

uT~ = u (zTi). 

We introduce a quantity with weight o: 

and approximate Eq. 

uT~o~ = ou," v + (1 - o) uT-I 

(1) to an accuracy  0{h~ + hl + At 2) 

. ,  ( + )  . ,  
. - ,  " u ( ~ , _ . , ,  ) _ ~ ~. ( T )  _ 2~,, + 

A t  -~1 ' i -- l j  i+l] ! 

_ ) + -,,(U )) + ' ) = =,,(' ). ln,L +) , ,_ ,_ 

2 ~ i ~ N t ,  2 ~ i ~ N , . ,  l ~ n ~ M .  

(8) 

Correspondingly,  we will  approxlmgte conditions (2)-(4) thus:  

n , U n = n U n = T n u n = T n 
u ~ l =  [ O ,  u~i = T( I} I  ,v ,+l i  T O ) I ,  i.1 (21i, i,V,+l (4) ; '  

1 n _ _  n - -  1 = t , , n  Un ~ _ _ , ~ n  

2111" (U3I Ul/)--q)(l)/' 2/,it ~'Nt+l/-- Nt - - l i / - - ' r  ' 

(9) 

(10) 

] n _ _  n - -  1 . ( u ~ 3 _ _ u ~ l ) = ~ ( ~ ) , ,  ~ ( u ,~ ,+ t  u,,v,_O--~,),- (11) 
2t~ 

Equations (8)-(11) allow calculations with a large  t ime step. A shortcoming of this scheme in the case 
of boundary conditions of the second sor t  is that the reduction method requires  an approximation,  Eq. (11), 
and thus is nonconservat ive [3]. 

We will consider  a layer  fixed in t ime (emitting the index). We rewri te  Eqs. (8), (10), (11) in the fo rm 
of a mat r ix  three-diagonal  scheme in which all known quantities lie on the r ight-hand side. For  boundary con- 
ditions of the f i rs t  sor t  

- -  u l _ l  + A u l  - -  u i + l  = g l  , u~ = " �9 

K I  

* The present  study was ca r r i ed  out in 1976-1977 while Pol ~ was in the USSR, and the resul ts  were obtained Indepen- 
dently f rom [3, 4], which studies the authors became aware  of af ter  the present  study was printed. 
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Boundary conditions of the second so r t  reduce  to re la t ionships  of the f o r m  

Buz - -  2u 3 = g2, 

- -u~_  + Bu i - u i +  ~ = g s ,  u s =  " " , 

UN2i 

- -  2UN,--, "~ Bah', = gN, " 

~ =  q/.(~ha ~2 and c~ = 2 (l -i- 8) + h~_ - ~  ~- •  Then Let  

(~ --[i 
--{} cr 

A =  

- 8  

~ --28 
- - 8  a 

B =  

- 8  

--8 

--8 

- - 2 8  

The reduct ion,  or  Buneman [1], method uses  doubly cycl ic  reduct ion.  We use  the  notation 

A (~ = A, B (~ = B, gl -~ g~. 

The bas ic  reduction fo rmulas  for  boundary conditions of the f i r s t  s o r t ,  Eq. (12), have the f o r m  

- . ; _ . , §  + A " - " . , -  .,+~,+, = A")g~"+ .,+.-(" ,- ,  ei"_2, : ~j~ ') , / - ,  (2'*'), 

A (t)+' -- [A(t)] 2 - - 2 E ,  t = 0 . . . . .  az--2 , 

while for  boundary conditions of the second so r t ,  Eq. (13), 

B(t-}- l ) /12__ 2U2.{_2t+l ~ B ( t )  r j_ , )_ ( t )  . _(t-{-l) 
6 2  , --~2-{.-2z=~[~2 ' 

_ _ g t + l  ~ ( t T I } u j  - "r I ' ~(t) t ~ ( t + l )  
i-2 + Ul+2t+'=B(O ~;i TSi+2 -'-gi-2 ----gi ' 

(,+I). D(t)_(t) 9_(0 .__(t+l)  /~2(2t+1), --2UN,_2t+, + B U N , = ~  g N ,  -F -EN,--2t--gN, ' 

B c t + ' ) =  [B(t)]2--2E, t----O . . . . .  S 2 - - 2 .  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(i9) 

F o r  Eq. (18) it is n e c e s s a r y  to continue the reduction 

B (s') U~s'-l) nt- 2---- B (s '-O g:~s,--l(s'-I)'-r- ~,N,a(s'--l) "+" g2-(s'-') , 

B ('') = [B(S'-"] ' - -  4E. 

(20) 

(21) 

In both cases  the las t  reduction s tep  pe rmi t s  obtaining a solution for  the cen t ra l  vec to r ,  while Eqs.  (16) 
and (18) al low calculat ion of all  r ema in ing  vec tors  upon reduction of t .  

In calculat ing t h e r i g ~ - h a n d  sides qj(t) with Eqs.  (16), (18), and (20) it is n e c e s s a r y  to opera te  with a 
high o rde r  of n u m b e r s ,  (depending on din/ensional l ty) ,  which leads to an i n c r e a s e  in computation e r r o r .  
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[2]. 
However ,  this shor tcoming can be eliminated by r e c u r r e n t  formulas  working with only inverse  mat r ices  

Below we presen t  a var iant  real iz ing the vec tors  pj (t) and qj {t) on a computer ,  for  which 

glo = A(',p}O -~ ql'), g~O = B(')p}') + q}". (22) 

Let  pj(0) = 0, qj(0) = gj(0). Then for  boundary conditions of the f i r s t  so r t  

p~,+,) = p}O _F A(O-] ,ri+=*('(~) ~-, vi-e"(~ + q~O), 'ia(ti~)---- "/+2"n(t) . §  "u-2,-n(t) .a.2.(t+]).i ' (23) 

and for  conditions of the second so r t  

p(t+~)_-- p~O -t- B ( ')-~ (2p(~%~,, -b. q(O). q[ '+')  = 2 (-.~.~,~(') -F p(t+U*). 

p~t+.). = pit) -F B(O- '  ( p ~ ,  + "]-:n(t) t 1-' '~i"(')"' q~'+') = ,~(t). -F n(O , - l . -2.( '+" 
" l j + 2 ~  " ~ j - - 2  �9 --~ ' 

(0 ~ "(~)), q q + ] ) = 2 ( q ~ ) , _ ~ t - F , . N ,  ,. P~+I) = .'N.")(O --~ B(~-~) (2p.v._,, -t- '~N. ,-... "(~+~)~ 

(24) 

The las t  reduction step leads to 

-(") -~"-]) B c''-])-1 (P~-'-') +~2  T~2,,-~+2), ~2~,-1 +_~ =~2~,-I+2 (25) 
= 4-(s,} q2',- '  ('') +2 q~;-l) ~_ q(2~,-l) _~ P2s,-1 +: 

The programs  which were  developed,  like Buneman ts or iginal  p rog ram [1], ut i l ize the second var ian t ,  
Eq. (22), which r ea l i zes  only qj(t). This method r equ i r e s  somewhat m o re  computation t ime  but is less  de-  
manding of machine m e m o r y ,  for  which only the express ions  

p}'+') 1- - - - / ' ( '+ ' ) - -q}~ut  - - ' ( ' ) ,  ), - ( " )  1 ,^(,., 
= k '  2s.-I (,./,,s,-I - -  n ( ~ , - l )  _ n ( s , - 1 ) ~  ( 2 6 )  

a r e  requ i red ,  eliminating the quantit ies pj(t) in Eqs.  (24) and (25) and leading to new r e c u r r e n t  formulas  for  
qj (t). 

Revolution of the ma t r i ces  A (t) and B(t), t = 0, . . . ,  s 2 --1 is accomplished with the aid of factored 
mat r ices  

A(I)=~2t v=,[ P (A(~ §  (27) 

The formula  for  B(t) is analogous.  The fac tored  BS2 has the fo rm 

(28) 

Revolution of the mat r ices  A(t), B(t), and B(S2) leads to revolution of the three-d iagonal  mat r ices  with the aid 
of reduction and multiplication by ~-2t or  fl-2s2. The fo rm of the factor izat ion formula  is re la ted  to  this .  This 
method is more  rapid than the dr ive  method of [4], but leads to a l imitation on N 1. In the case  of 7 = u = 0 
the quantity 1/~ (B(~ --2) will be i r r e g u l a r ,  but then the solution can be defined at a single point. 

The reduction method was rea l ized  in the fo rm of two programs  for  solving nonstat ionary and s ta t ionary 
equations for  boundary conditions of the f i r s t  and second so r t .  A number  of tes t  problems were  solved with 
these  programs on a Minsk-32 machine.  Fo r  example,  the problem of Eqs.  (1)-(4) was solved with T = 1.205, 
g = 0 and initial condition 

at g = 0 and T 1 = T 2 = T 3 = T 4 = 0o 
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The theore t ica l  and numer ica l  solutions coincided to an accuracy  of 10 -4 at step values of h 1 = 0.09, 
h 2 = 0.1. Twelve points in t ime  with a step At = 0.1 were  calculated.  T ime requi red  for  calculating one 
var iant  was 5 mln. 

N O T A T I O N  

Y and 4 ,  coefficients;  u, t e m p e r a t u r e ,  concentra t ion,  e tc .  ; x and y ,  coordinates;  t ,  t ime;  A, Laplace 
opera tor ;  f(x, y) ,  initial function; g(x, y ,  t) and T t (y, t);  T2(x, t); T3(y, t); T4(x, t); ~ol(y, t); ~02(x, t); ~03(y, t); 
~4 (x, t ) ,  specif ied functions; sl and s2, dimensional i ty  coefficients  of data blocks ; A (0), A (t), A (t-t),  mat r ices  
of a lgebra ic  sys tem of equations for  boundary conditions of f i r s t  sor t ;  B(~ B (t), B t - t  ma t r i ces  of sys tem of 
equations for  boundary conditions of second sor t ;  gi ,  vec tors  of r ight-hand sides;  E,  unit matr ix;  ~ ,  /3, e le -  
ments of th ree-d iagonal  matr ix ;  ~j, Pj_2 t+l, uj+2t+t, vec tors  of des i red  quantit ies;  qi(t), pi (t), t = 1 . . . . .  s 
vectors  in cycl ical  reduction;  h t and h 2, step of space grid;  At, s tep in t ime;  a,  b, dimensions of rec tangle ;  
N t and N2, number  of grid points along x and y axes ,  respec t ive ly ;  zn j ,  grid;  unj, grid function; a,  r ea l  
p a r a m e t e r  (weight). 

1. 

2. 

3. 
4. 

L I T E R A T U R E  C I T E D  

O. Buneman, A Compact Noniterat ive Poisson Solver ,  Rep. 294, Stanford Universi ty Institute for  P las -  
ma Resea rch ,  Stanford (1969). 
B. L. Buzbel ,  G. H. Golub, and C. W. Nelson, "On d i rec t  methods for  solving Poisson ' s  equat ion,"  
SIAM J.  Numer .  Ana l . ,  7, No. 4, 627 (1970). 
A. A. Samarsk i i ,  T h e o r y ~ f  Difference Schemes [in Russian],  Nauka, Moscow (1977). 
M. I. Bakirova,  A. A. Golubeva, V. Ya. Karpov,  and E. S. Nikelaev, "A p rog ram for  solving el l ip-  
t ica l  type equations witMn a rec tangle  by the reduction method , "  Prepr in t  IPM Akad. Nauk SSSR, Mos- 
cow (1977). 

S O L U T I O N  OF  T H E  N O N L I N E A R  I N V E R S E  T H E R M A L  

C O N D U C T I V I T Y  P R O B L E M  BY T H E  I T E R A T I O N  M E T H O D  

O.  M. A l i f a n o v  a n d  V.  V.  M i k h a i l o v  

A regula r  i terat ion a lgor i thm is const ructed for  the case  of a nonlinear gene ra l i zed  thermal  
conductivity equation for  determinat ion of the nonstat ionary t h e rm a l  flux. The a lgor i thm is 
based on the method of conjugate gradients .  

In exper imenta l  studies of nonstat ionary the rma l  p r o c e s s e s ,  it becomes neces sa ry  to calculate the rma l  
boundary conditions f rom t empe ra tu r e  measurements  within bodies (the inverse  t he rma l  conductivity boundary 
problem).  The well-known incor rec tness  of the formulat ion of this inverse  problem,  which manifests  i t se l f  
as a strong sensi t ivi ty of the resu l t s  to e r r o r s  in the input information,  requi res  the development of approxi-  
mate  a lgor i thms which can suppress  the instabil i ty of the resu l t s  and maintain requi red  accuracy .  

We will cons ider  the inverse  problem for  a nonlinear genera l ized  the rmal  conductivity equation in the 
region {0 _< x _< b, 0 _~ t _< tm}. It is r equ i red  that the dependence of t he rma l  flux ql {t) on the left-hand boun- 
d a r y  on the known t e m p e r a t u r e  f(t) and the t he rma l  flux q2(t) on the r ight-hand boundary be de te rmined .  Initial 
conditions a r e  specif ied.  Thus ,  we have 

OT 0 (~.(T) OT ) aT q_ (1) 
C(T) 0-----~= 0--~- ~ d-K(T) Ox ep(T), O<~x.<b, O<t~t. .  

T (x, 0) = ~ (x), (2) 
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